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A vibrating-element density meter is a mechanical oscillator with known properties,
for example a tuning fork or a simple rod, driven to vibrate at a known frequency. The
oscillator is immersed in a fluid and the resonant frequency measured. The density of
the fluid can then be inferred. We consider an idealized meter immersed in two-phase
flows of various types, and investigate whether a simple single-phase interpretation
allows us to deduce the density of the mixture. We find that, when the density contrast
between the two fluids is not great, the simple interpretation gives good results, for
example in oil/water flows. However, when the density contrast is significant, for
example in gas/liquid flows, the simple interpretation is highly inaccurate.

1. Introduction
The use of vibrating-element meters to measure the density of a single fluid is

widespread, and has a number of significant advantages over other methods. (a) Very
little bulk motion is generated in the fluid. (b) The vibrating part of the device can be
small (a few centimetres long). (c) Little heat is generated during the measurement.
(d) The principal measurements can be reduced to those of mass, length and time,
which can be made with high precision. (e) The measurement can be made in a high
pressure environment.

The measurement principle employed is straightforward. A mechanical oscillator,
such as a tuning fork or simple rod, is driven to oscillate at a known frequency
when surrounded by the fluid whose density is sought, and the resonant frequency
determined. The amount by which the resonant frequency is shifted from that
determined in vacuo is a known function of the density of the fluid, which can then
be inferred. A similar measurement can also be used to measure the viscosity of the
fluid, although the design parameters of the device may be somewhat different. If the
system is set up so that there is a change of phase in the oscillation of the device
along its length, for example a standing wave, then it may be possible to deduce the
longitudinal flow rate of the fluid by measuring the amount by which the phase of
the response is changed by the flow. This type of device is often known as a Coriolis
meter.

In this paper we consider the operation of a vibrating-element meter in a flowing
mixture of two different fluids. We shall restrict our attention to the possibility of
measuring the fluid mixture density, and hence of deducing the fraction of each fluid
phase from their known densities. Multiphase flows arise in various contexts, notably
in the oil and nuclear industries, but also in many chemical engineering processes. A
measurement of the phase fractions in a two-phase mixture is often important, but
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Figure 1. The coordinate system for a rod vibrating in a pipe containing a fluid.

never easy. A good example is the oil/water flow that must be metered downhole in
a producing oil well, where the temperature and pressure are high. Vibrating-element
meters are used on some platforms in the North Sea to meter the mass flow rate
and density of flows leaving the gas/liquid separator and consisting mainly of oil
and water. There is, however, little experimental or theoretical work available to give
the user any confidence in the operation of these devices in such a flow (see, for
example, Watt & Lu 1992).

2. A model problem
The aim of this paper is to gain some insight into whether the response of a

vibrating-element density meter is likely to be interpretable in a two-phase flow.
In order to achieve this, we consider the model problem illustrated in figure 1.
An infinitely long solid rod of radius R vibrates uniformly in the direction θ = 0
with angular frequency ω and amplitude εR in a rigid pipe with radius RC . The
pipe contains two fluids, labelled fluid 1 and fluid 2, with densities ρ1 and ρ2

respectively. We also assume that the flow is two-dimensional, although there may
be an axial velocity field that does not vary in the axial direction, and that for a
typical meter we can take R ≈ 1 cm, ω ≈ 2500 Hz, and ε < 10−2. We assume
that the fluids are incompresssible. A typical velocity is εRω ≈ 0.25 m s−1, which
is much smaller than 15 m s−1, the smallest possible sound speed in an air/water
mixture at atmospheric pressure (see, for example, Ishii et al. 1993). We have also
not considered the possibility of bubble resonance, which takes place at frequencies
of the order of MHz. This problem was studied for a single fluid surrounding a
rod by Retsina, Richardson & Wakeham (1986). A device based on a vibrating rod
has been used for single-phase density measurement (see Bett et al. 1989), and the
analysis given in Retsina et al. (1986) was used directly and in detail to help design
the meter. Our objective in the present paper is somewhat different. We treat this as
a model problem that will allow us to gain some insight first into whether a typical
device is likely to be interpretable under any circumstances in two-phase flow, and
secondly into why a simple interpretation may be inappropriate.

We shall begin by considering separated flows with two distinct regions, which we
label D1 and D2, where the fluid densities are ρ1 and ρ2 respectively. The equations
for conservation of mass and momentum in each region are

∇ · uj = 0, (2.1)
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ρj

(
∂uj

∂t
+ uj · ∇uj

)
= −∇pj + µj∇2uj , (2.2)

for j = 1, 2, where uj , pj and µj are the fluid velocity, pressure and viscosity in region
Dj . These are to be solved subject to the boundary conditions

uj = iωεReiωtx̂ at r = R
(
εeiωt cos θ + (1− ε2e2iωt sin2 θ)1/2

)
, (2.3)

where x̂ is a unit vector in the direction of oscillation, θ = 0, and

uj = 0 at r = RC . (2.4)

We can estimate the strength of inertial forces relative to surface tension forces
by calculating the Weber number, We = ρεR3ω2/σ, where σ is the surface tension.
Note that the radius of curvature of the surface is of O

(
R/ε

)
since the surface

displacement is of O (εR) and the lengthscale for radial disturbances is of O (R). For
typical air/water or oil/water mixtures, σ ≈ 5 × 10−2 kg s−2 and hence, using the
typical values noted earlier, We ≈ 1000. This means that typically surface tension
forces are negligibly small relative to inertial forces. Note that the boundary conditions
at the fluid/fluid interface can be applied at the undisturbed position of the interface,
at leading order. For notational convenience, we make this approximation at the
interface now, and also anticipate the result, derived below, that the flow is inviscid
at leading order. Continuity of normal velocity and pressure must therefore hold at
the interface, so that

p1 = p2, u1 · n = u2 · n at D1 ∩ D2, (2.5)

where n is the unit normal to the fluid/fluid interface.
Appropriate dimensionless variables are

r̂ = r/R, ûj = uj/εRω, p̂j = p/ρjεR
2ω2, t̂ = ωt. (2.6)

In terms of these variables, (2.1) to (2.4) become

∇̂ · ûj = 0, (2.7)

∂ûj

∂t̂
+ εûj · ∇̂ûj = −∇̂p̂j + Re−1

j ∇̂2ûj , (2.8)

subject to

ûj = ieit̂x̂ at r̂ = εeit̂ cos θ + (1− ε2e2it̂ sin2 θ)1/2, (2.9)

ûj = 0 at r̂ = R̂C , (2.10)

where

Rej = ρjωR
2/µj, R̂C = RC/R. (2.11)

For the typical values quoted earlier, Rej ≈ 2.5× 106, and, as stated above, the flow is
inviscid at leading order. As ε→ 0 the nonlinear advection terms become small and
the momentum equation (2.8) is linear at leading order. In addition, the boundary
conditions at the surface of the vibrating rod can be applied at the undisturbed
position. The leading-order problem is therefore

∂uj

∂t̂
= −∇̂p̂j , ∇̂ · ûj = 0,

and hence

∇̂2p̂j = 0, (2.12)
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subject to

∂p̂j

∂r̂
= eit̂ cos θ at r̂ = 1, (2.13)

∂p̂j

∂r̂
= 0 at r̂ = R̂C , (2.14)

ρ̂p̂1 = p̂2, n · ∇̂p̂1 = n · ∇̂p̂2 at D1 ∩ D2, (2.15)

where ρ̂ = ρ1/ρ2. For this inviscid problem we can only apply boundary conditions on
the normal components of the velocity at the solid surfaces. The boundary conditions
that govern the transverse velocity components at the solid surfaces are satisfied
across boundary layers. Note that the axial velocity distribution does not appear in
the problem that governs the transverse velocity components.

If we apply Newton’s second law to the vibrating rod we find that

F = −εRω2
(
mf + m0

)
eiωt, (2.16)

where F is the force on the rod, mf is the added mass contributed by the surrounding
fluid, and m0 is the mass of the rod, all per unit length. In vacuo, the force required
to drive the oscillation is F0 = −εRω2m0e

iωt. When the rod is surrounded by fluid,
the added mass contribution, −εRω2mfe

iωt, must come from the force exerted by the
fluid on the rod. At leading order therefore, the added mass provided by the fluid is
given by

mf = − R
2

eiωt

∫ 2π

0

ρjp̂j |r̂=1 cos θdθ. (2.17)

Note that viscous drag is negligible at leading order and moreover the correction
term is imaginary. This leads to a contribution to the drag that is out of phase with
the force due to added mass by 90◦ and can easily be removed by signal processing.
The leading-order contribution from the viscous force on the rod that is in phase
with the added mass force is therefore even smaller, of O(Re−2

j ).
In a real meter the vibrating element has a finite length and a well-defined resonant

frequency. In practice it is this resonant frequency that is measured. However, a
measurement of the resonant frequency is used to determine the added mass provided
by the surrounding fluid, as described in Retsina et al. (1986). The resonant frequency
of a different type of vibrating element, a flat plate, is analysed in detail for the case
of a single fluid in Cumberbatch & Wilks (1987). This is also shown to be related to
the added mass of the fluid accelerated during the vibration. We shall proceed on the
basis that the measurement made is effectively of the added mass of the fluid.

3. Single-phase solution
When only one fluid is present outside the rod we must simply solve Laplace’s

equation (2.12) subject to the boundary conditions (2.13) and (2.14). The solution is

p̂ =
eit̂

1− R̂2
C

(
r̂ +

R̂2
C

r̂

)
cos θ, (3.1)

and hence

mf =
R̂2
C + 1

R̂2
C − 1

ρ1πR
2. (3.2)
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Figure 2. The geometrical factor, G
(
R̂C
)
, plotted as a function of R̂C = RC/R. The dotted line is

the asymptote, G = 1.

In this case the added mass is simply the mass displaced by the rod, ρ1πR
2, multiplied

by a geometrical factor that tends to unity as R̂C → ∞. This geometrical factor,

G
(
R̂C

)
, defined as

G
(
R̂C

)
=
R̂2
C + 1

R̂2
C − 1

=
R2
C + R2

R2
C − R2

, (3.3)

tells us about the effect of the rigid pipe wall at r = RC , and is plotted in figure 2.
There are two ways of thinking about this. First, if the effect of the pipe wall is
neglected we can ask what is the error in the calculation of the fluid density. For
R̂2
C � 1, G ∼ 1 + 2/R̂2

C , so for an error of less than 1% we require R̂C >
√

200 ≈ 14.1.
This is consistent with the conclusions reached by a more circuitous route in Retsina
et al. (1986), where figure 4 shows an equivalent result. Secondly, if we want the
meter to be affected by the density across as much of the pipe as possible the pipe
wall should not be so far away that its effect can be neglected, since then there is
some part of the fluid in the neighbourhood of the pipe wall whose density is not
being measured. Only the first consideration is relevant to single-phase flow, where
the density is uniform. Figure 2 shows the decreasing effect of the pipe wall on
the measurement as R̂C increases. This indicates that the measurement is perhaps
rather more localized than we would like if the distribution of the fluid density is not
uniform. We investigate this further in the following section.

Finally, note that (3.2) shows that the added mass is directly proportional to the
fluid density. In the following analysis, where two fluids are present outside the rod,
the simplest interpretation of the measured added mass is to assume an effectively
single-phase mixture, so that the dimensionless inferred density, ρ̂meas = ρmeas/ρ2, is
given by

ρ̂meas =
R̂2
C − 1

R̂2
C + 1

mf

ρ2πR2
. (3.4)



348 J. Billingham

4. Concentric layers
In order to investigate how our simplified device responds to different densities of

fluid at different distances from the rod we consider the behaviour in two concentric
layers of different fluids. The interface between the fluids lies at R = RI , with fluid
1 nearest the rod. The solution of (2.12) that satisfies the boundary conditions (2.13)
to (2.15) is of the same form as that for a single fluid, with

p̂j = eit̂ cos θ
(
Ajr̂ + Bj/r̂

)
, (4.1)

where

A1 =
ρ̂
(
R̂2
C − R̂2

I

)
−
(
R̂2
C + R̂2

I

)
ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I + 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I − 1

) , (4.2a)

B1 =
−R̂2

I

{
ρ̂
(
R̂2
C − R̂2

I

)
+
(
R̂2
C + R̂2

I

)}
ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I + 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I − 1

) , (4.2b)

A2 = − 2ρ̂R̂2
I

ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I + 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I − 1

) , (4.2c)

B2 = − 2ρ̂R̂2
CR̂

2
I

ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I + 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I − 1

) . (4.2d)

From this we find that

mf =
ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I − 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I + 1

)
ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I + 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I − 1

)ρ1πR
2, (4.3)

and hence that

ρ̂meas = ρ̂

(
R̂2
C − 1

R̂2
C + 1

)
ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I − 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I + 1

)
ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I + 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I − 1

) . (4.4)

When R̂C � 1 with R̂I = O (1), the wall of the pipe is far from the rod, and we
can consider the effect on the measured density of the size of the layer of fluid on
the rod. This is illustrated in figures 3(a) and 3(b). As the layer thickness increases
the measured density changes from that of fluid 2 to that of fluid 1, as expected.
When ρ̂ � 1 the layer on the rod has a much lower density than the bulk fluid.
In this case the measured density rapidly approaches that of the fluid layer, with
ρ̂meas = O (ρ̂) when R̂I = O (ρ̂), as illustrated in figure 3(a). In other words, a thin
coating of low-density fluid can mask the presence of the outer, higher-density fluid.
This is clearly to be avoided in practice, if at all possible. In the opposite case,
ρ̂ � 1, the change in measured density is more gradual, and ρ̂meas increases on an
O (1) lengthscale, independent of the magnitude of ρ̂, as illustrated in figure 3(b).

In general, we can write the measured fraction of fluid 1, αmeas, in terms of the
measured density by noting that

αmeas = (ρ̂meas − 1) / (ρ̂− 1) , (4.5)
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Figure 3. The dimensionless measured density, ρ̂meas, plotted as a function of the dimensionless

inner layer thickness, R̂I , when the wall of the pipe is far from the rod (R̂C � 1), for density ratios
(a) ρ̂ = 0.01, 0.1, 0.8, 1.2; (b) ρ̂ = 10, 50, 100.

and hence that for concentric layers

αmeas =
R̂2
I − 1

R̂2
C + 1

ρ̂2
(
R̂2
C − 1

)(
R̂2
C − R̂2

I

)
+ 2ρ̂R̂2

C

(
R̂2
I + 1

)
−
(
R̂2
C + 1

)(
R̂2
C + R̂2

I

)
(ρ̂− 1)

{
ρ̂
(
R̂2
C − R̂2

I

)(
R̂2
I + 1

)
+
(
R̂2
C + R̂2

I

)(
R̂2
I − 1

)} .

(4.6)
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Figure 4. The measured fraction of fluid 1 plotted against the actual fraction for (a) ρ̂ = 1.2 and

R̂C = 2, 5; (b) ρ̂ = 10 and R̂C = 2, 3.5, 5; (c) ρ̂ = 0.1 and R̂C = 2, 3.5, 5. The dotted line is αmeas = α.

The actual value of, α, the fraction of fluid 1 is

α =
R̂2
I − 1

R̂2
C − 1

. (4.7)

Figure 4 shows plots of αmeas against α for various values of ρ̂ and R̂C . In figure 4(a),
ρ̂ = 1.2, which is a typical value for a layer of water surrounded by a layer of oil. It
is clear that the simple, single-phase interpretation is not correct in this case, with the
interpretation becoming worse as R̂C increases. This is not really surprising, since this
type of separated flow is the most unfavourable arrangement of fluid for this simple
interpretation. If we could guarantee that the fluids would be arranged in concentric
layers, (4.6) would allow us to interpret the response of the device. Figure 4(b) shows
the response when the fluid density contrast is somewhat greater, perhaps for a layer
of water surrounded by gas in a high-pressure environment. Figure 4(c) shows what
happens when the fluid on the rod has a much lower density than the other fluid.
As we would expect from the results shown in figure 3(a), a small actual fraction of
low-density fluid on the rod is enough to make the device respond as if it were almost
entirely surrounded by it.

The above analysis has shown us what happens when the fluids have a radially strat-
ified arrangement. We now consider the response of the device in a circumferentially
stratified medium.
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Figure 5. The arrangement of the circumferentially stratified fluids.

5. Circumferentially stratified fluids
Ideally, we would like to study the response of the device when the fluids exist as

two regions separated by radii of the pipe cross-section. Unfortunately there is no
analytical solution available for this geometry. However we can develop an analytical
solution in the limit R̂C = ∞ with two fluids separated by radii running from r̂ = 1
to infinity. This idealized situation will give us some idea of the dependence of the
response on the circumferential position of the two fluids. We have already studied
the dependence on the position of the pipe wall and the radial position of the fluids,
so it is not unreasonable to study this case with the pipe wall far from the rod.

The full problem that we wish to solve, dropping the hats for notational convenience,
is now

∇2pj = 0, (5.1)

for r > 1, θ2 6 θ < θ2 + 2π, subject to

∂pj

∂r
= eit cos θ at r = 1, (5.2)

pj → 0 as r →∞, (5.3)

ρ̂p1 = p2,
∂p1

∂θ
=
∂p2

∂θ
at θ = θ1 and θ = θ2, (5.4)

where fluid 2 lies in the sector θ2 6 θ 6 θ1 and fluid 1 lies in the sector θ1 6 θ 6 θ2+2π,
as shown in figure 5.

We can solve the boundary value problem defined by (5.1) to (5.4) using finite
Mellin transforms (see Sneddon 1973). We define the finite Mellin transform, Pj (s, θ),
of pj (r, θ) as

Pj (s, θ) =

∫ ∞
1

(
1

rs+1
+ rs−1

)
pj (r, θ) dr. (5.5)

Finite Mellin transforms are most often used to solve boundary value problems in
finite sectors that include the origin, in which case the integral ranges from zero
to one, hence the name. Using the transformation r 7→ 1/r, the integral transform
given by (5.5) is obtained, although ‘finite’ is now something of a misnomer. If
pj (r, θ) = O

(
r−kj
)

as r → ∞, then Pj (s, θ) is analytic in the strip −kj < Re (s) < kj .
By seeking a far-field solution of the form

pj (r, θ) ∼ r−kj
{
Cj sin

(
kjθ
)

+ Dj cos
(
kjθ
)}
, (5.6)

that satisfies the four boundary conditions given by (5.4), we find that k1 = k2 = k,
and that k must satisfy the solvability condition

F (k) ≡ −4ρ̂+ (1 + ρ̂)2 cos (2πk)− (1− ρ̂)2 cos {2k (−π + θ1 − θ2)} = 0. (5.7)

We therefore require Pj to be analytic in the strip −k0 < Re (s) < k0, where k0 is the
smallest positive root of (5.7).
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The finite Mellin transform of (5.1) subject to the boundary condition (5.2) is

∂2Pj

∂θ2
+ s2Pj = −2eit cos θ. (5.8)

Note that in order to make this simplification of the Laplacian we require that
(r−s + rs) r∂pj/∂r → 0 as r → ∞. This excludes the possibility of a logarithmic
singularity in pj as r →∞. Equation (5.8) has the general solution

Pj = Aj (s) sin (sθ) + Bj (s) cos (sθ)− 2eit cos θ

s2 − 1
. (5.9)

In order to determine the functions Aj (s) and Bj (s) we must apply the continuity
conditions (5.4). We find that

ρ̂A1 sin (sθ1) + ρ̂B1 cos (sθ1)− A2 sin (sθ1)− B2 cos (sθ1) =
2 (ρ̂− 1) eit cos θ1

s2 − 1
, (5.10)

ρ̂A1 sin {s (θ2 + 2π)}+ ρ̂B1 cos {s (θ2 + 2π)} − A2 sin (sθ2)− B2 cos (sθ2)

=
2 (ρ̂− 1) eit cos θ2

s2 − 1
, (5.11)

A1 cos (sθ1)− B1 sin (sθ1)− A2 cos (sθ1) + B2 sin (sθ1) = 0, (5.12)

A1 cos {s (θ2 + 2π)} − B1 sin {s (θ2 + 2π)} − A2 cos (sθ2) + B2 sin (sθ2) = 0. (5.13)

The solution of these linear equations can be written in the form Aj = aje
it/K and

Bj = bje
it/K , where

a1 = cos θ1

[
− (1− ρ̂) sin {s (−2π + θ1 − 2θ2)}

+ (1 + ρ̂) sin {s (2π + θ1)} − 2 sin (sθ1)
]

+ cos θ2

[
(1− ρ̂) sin {s (2θ1 − θ2)}

+ (1 + ρ̂) sin (sθ2)− 2 sin {s (2π + θ2)}
]
, (5.14)

b1 = cos θ1

[
(1− ρ̂) cos {s (−2π + θ1 − 2θ2)}

+ (1 + ρ̂) cos {s (2π + θ1)} − 2 cos (sθ1)
]

+ cos θ2

[
(1− ρ̂) cos {s (2θ1 − θ2)}

+ (1 + ρ̂) cos (sθ2)− 2 cos {s (2π + θ2)}
]
, (5.15)

a2 = − cos θ1

[
(1− ρ̂) sin {s (−2π + θ1 − 2θ2)}

+ (1 + ρ̂) sin {s (−2π + θ1)} − 2ρ̂ sin (sθ1)
]

− cos θ2

[
− (1− ρ̂) sin {s (−2π + 2θ1 − θ2)}

+ (1 + ρ̂) sin {s (2π + θ2)} − 2ρ̂ sin (sθ2)
]

(5.16)

b2 = − cos θ1

[
− (1− ρ̂) cos {s (−2π + θ1 − 2θ2)}

+ (1 + ρ̂) cos {s (−2π + θ1)} − 2ρ̂ cos (sθ1)
]

− cos θ2

[
− (1− ρ̂) cos {s (−2π + 2θ1 − θ2)}

+ (1 + ρ̂) cos {s (2π + θ2)} − 2ρ̂ cos (sθ2)
]
, (5.17)

K =
(
s2 − 1

)
F (s) /2 (ρ̂− 1) . (5.18)

It is now clear that the solutions, Pj , have poles at the roots of F (s) = 0, as expected.
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Although it appears that there are two other poles at s = ±1, these zeros in F (s)
are balanced by zeros in the numerators, and the functions Pj (s, θ) are analytic in
the strip −k0 < Re (s) < k0, as required. The Mellin inversion formula can now be
written as

pj (r, θ) = − 1

2πi

∫ i∞

−i∞
rsPj (s, θ) ds. (5.19)

This allows us to write down the measured density, ρ̂meas, using (2.17) and (3.4), as

ρ̂meas = − 1

2π2i

∫ i∞

−i∞

[
2

s2 − 1

{∫ θ1

θ2

cos2 θdθ + ρ̂

∫ θ2+2π

θ1

cos2 θdθ

}
−A2 (s)

∫ θ1

θ2

sin (sθ) cos θdθ − ρ̂A1 (s)

∫ θ2+2π

θ1

sin (sθ) cos θdθ

−B2 (s)

∫ θ1

θ2

cos (sθ) cos θdθ − ρ̂B1 (s)

∫ θ2+2π

θ1

cos (sθ) cos θdθ

]
ds. (5.20)

The expression in curly brackets can be integrated with respect to θ immediately, and
then integrated with respect to s by closing the contour in the left half-plane and
evaluating the residue at s = −1. Finally, after evaluating the remaining θ integrals
and simplifying as far as possible using (5.15) to (5.18), we find that, in terms of the
measured and actual fractions of fluid 1,

αmeas = α− 2 (1− ρ̂)

2π2i

(
cos2 θ1 + cos2 θ2

)
×
∫ i∞

−i∞

s
[
(1 + ρ̂) sin (2πs)− (1− ρ̂) sin {2πs (1− 2α)}

](
1− s2

)2 [−4ρ̂+ (1 + ρ̂)2 cos (2πs)− (1− ρ̂)2 cos {2πs (1− 2α)}
]ds

+
8 (1− ρ̂)

2π2i
cos θ1 cos θ2

×
∫ i∞

−i∞

s
[
ρ̂ sin {2πs (1− α)}+ sin (2πsα)

](
1− s2

)2 [−4ρ̂+(1+ ρ̂)2 cos (2πs)− (1− ρ̂)2 cos {2πs (1−2α)}
]ds. (5.21)

We can see immediately that for |ρ̂− 1| � 1 the measured fraction is correct at
leading order, but that there will be a significant error otherwise. For the special case,
θ1−θ2 = π, when there are equal amounts of each fluid, we can evaluate the integrals
in (5.21) analytically. First we note that in this case

αmeas = α− 4 (ρ̂− 1)2

2π2i (1 + ρ̂)
cos2 θ2

∫ i∞

−i∞

s cot
(
πs/2

)(
1− s2

)2
ds. (5.22)

The integrand has simple poles on the real axis at s = ±1 and s = ±2n, with
n = 1, 2, . . .. Note that the poles at s = ±1 were introduced by the integration around
the vibrating rod and are not present in the transformed pressures, Pj . In this case
we can readily calculate the integral by closing the contour of integration in the left
half-plane and summing the residues at the enclosed poles. We find that

1

2πi

∫ i∞

−i∞

s cot
(
πs/2

)(
1− s2

)2
ds =

π

8
− 1

π

∞∑
n=1

4n(
1− 4n2

)2
. (5.23)

The infinite sum in this expression becomes trivial when decomposed into partial
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fractions, and we finally obtain

αmeas =
1

2
+

(1− ρ̂)

2 (1 + ρ̂)

(
1− 4

π2

)
cos2 θ2. (5.24)

Clearly, the measured fraction of fluid 1 is correct when θ2 = π/2 or 3π/2, when the
rod vibrates at right angles to the interface. In each of these cases the exact solution
for the pressure field in each fluid is pj = −eit cos θ/r, the same as the single-phase
solution. We can also see that the error is greatest when θ2 = 0 or π, when the rod
vibrates in the direction of the interface. In the worst possible case, with ρ̂ = 0 or ∞
and θ2 = 0 or π, αmeas ≈ 0.5± 0.297.

In general, we must evaluate the integrals in (5.21) numerically. We can write (5.21)
in terms of integrals on the real line as

αmeas = α+
2 (1− ρ̂)

π2

(
cos2 θ1 + cos2 θ2

)
×
∫ ∞

0

u
[
(1 + ρ̂) sinh (2πu)− (1− ρ̂) sinh {2πu (1− 2α)}

](
1 + u2

)2 [−4ρ̂+ (1 + ρ̂)2 cosh (2πu)− (1− ρ̂)2 cosh {2πu (1− 2α)}
]du

−8 (1− ρ̂)

π2
cos θ1 cos θ2

×
∫ ∞

0

u
[
ρ̂ sinh {2πu (1− α)}+ sinh (2πuα)

](
1 + u2

)2 [−4ρ̂+ (1 + ρ̂)2 cosh (2πu)− (1− ρ̂)2 cosh {2πu (1− 2α)}
]du.

(5.25)

The integrands in (5.25) decay exponentially fast as u→∞ and the integrals are easy
to evaluate numerically using the trapezium rule. We can use (5.24) for the special
case θ1 − θ2 = π to verify that this numerical evaluation of the integrals is correct.

Figures 6(a) and 6(b) show that when the fluid densities are comparable the
measured fluids fractions are close to the actual values. We must note, however, that
(4.5) shows that in this case αmeas is defined as the ratio of two small quantities. This
means that, although in theory the device works well, small errors inherent in the
measurement process may be amplified in this case. Figures 6(c) and 6(d) show that
this is not the case when there is a significant density contrast between the fluids. The
measured values of α vary enormously depending on the orientation of the sectors
for a given liquid fraction and, unless α = 0.5, the measured fraction is never close to
the actual fraction.

6. A multiphase mixture
The final case that we consider is of a multiphase mixture that consists of a

continuous phase, which we label as fluid 1, and a dispersed phase, labelled as fluid
2. We shall make the usual continuum approximation for such a mixture, and use α
to represent the local fraction of the continuous phase. The approximation procedure
is described in Drew (1983). The relevant governing equations are

∇ · {αu1 + (1− α) u2} = 0, (6.1)

ρ1α

(
∂u1

∂t
+ u1 · ∇u1

)
= −α∇p+ µ1α∇2u1 −D − A, (6.2)
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Figure 6. The fraction of fluid 1 measured by the device when the fluids are circumferentially
stratified with (a) ρ̂ = 0.8, (b) ρ̂ = 1.2, (c) ρ̂ = 0.1, (d) ρ̂ = 10.

ρ2 (1− α)
(
∂u2

∂t
+ u2 · ∇u2

)
= − (1− α)∇p+ µ2 (1− α)∇2u2 +D + A, (6.3)

where

D =
−12πµ1Rb (1− α) (u2 − u1)

Vb
, (6.4)

A = − 1
2
{αρ1 + (1− α) ρ2} α (1− α)

(
∂u2

∂t
+ u2 · ∇u2 −

∂u1

∂t
− u1 · ∇u1

)
, (6.5)

subject to

u1 = u2 = 0 at r = RC , (6.6)

u1 = u2 = iωεReiωtx̂ at r = R
(
εeiωt cos θ + (1− ε2e2iωt sin2 θ)1/2

)
. (6.7)

Note that we have assumed that the pressure in each of the two fluid phases is equal.
For dispersed flows, the difference in pressure is proportional to |u2 − u1|2 (see, for
example, Pauchon & Banerjee 1986). We shall see below that quadratic velocity terms
do not appear at leading order in our approximation, so for ease of presentation we
have assumed equal pressures from the outset.

The Stokes drag on the dispersed phase is given by D, where Rb is the bubble
radius and Vb the bubble volume. We have assumed that fluid 2 is monodisperse.
The added mass force is given by A. This represents the force that is exerted by
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the fluids on each other when there is a relative acceleration. There is some debate
about the appropriate form for the spatial derivatives in this force law, as described
in Ishii et al. (1993). We have chosen what appears to be the correct form, but, as
we shall see below, in the low-amplitude approximation that we shall make, all of
the possible choices are equivalent at leading order. The term that multiplies the
difference in fluid accelerations in definition (6.5) approaches −ρ1(1− α)/2 as α→ 1,
which is appropriate when fluid 2 exists as dilute spherical bubbles, and similarly as
α → 0. When α is not close to unity this term reflects the fact that each droplet or
bubble of the dispersed phase exists in a mixture with density αρ1 + (1− α) ρ2.

Appropriate dimensionless variables are, as before, given by (2.6), but now with

p̂ = p/ρ1εR
2ω2. (6.8)

Equations (6.1) to (6.7) become

∇̂ · {αû1 + (1− α) û2} = 0, (6.9)

α

(
∂û1

∂t̂
+ εû1 · ∇̂û1

)
= −α∇̂p̂+ Re−1

1 ∇̂2û1 + Re−1
b (1− α) (û2 − û1)−

1

ρ̂
Â, (6.10)

(1− α)
(
∂û2

∂t̂
+ εû2 · ∇̂û2

)
= −ρ̂ (1− α) ∇̂p̂+ Re−1

2 (1− α) ∇̂2û2

− ρ̂Re−1
b (1− α) (û2 − û1) + Â, (6.11)

where

Â = − 1
2
{α+ ρ̂ (1− α)} α (1− α)

(
∂û2

∂t̂
+ εû2 · ∇̂û2 −

∂û1

∂t̂
− εû1 · ∇̂û1

)
, (6.12)

subject to

û1 = û2 = 0 at r̂ = R̂C , (6.13)

û1 = û2 = ieit̂x̂ at r̂ = εeit̂ cos θ + (1− ε2e2it̂ sin2 θ)1/2. (6.14)

The dispersed-phase Reynolds number is given by

Reb = ρ1ωR
2
b/9µ1, (6.15)

for spherical bubbles. For the smallest bubbles likely to be encountered, Rb ≈ 1 mm,
and hence Reb ≈ 28. The value of Reb will be larger for larger bubbles. As we noted
earlier, the first in-phase viscous correction to the leading-order value of the force on
the rod is of O

(
Re−2

b

)
, so we shall assume that the interphase drag is negligibly small,

with Reb � 1.
At leading order for Rej � 1, Reb � 1 and ε� 1

α
∂û1

∂t̂
= −α∇̂p̂+

1

2ρ̂
{ρ̂α+ (1− α)} α (1− α) ∂

∂t̂
(û2 − û1) , (6.16)

∂û2

∂t̂
= −ρ̂∇̂p̂− 1

2
{ρ̂α+ (1− α)} α ∂

∂t̂
(û2 − û1) . (6.17)

Equations (6.16) and (6.17) are linear in the three unknowns ∇̂p̂, ∂û1/∂t̂ and ∂û2/∂t̂,
and we can easily show that

∂

∂t̂
{αû1 + (1− α) û2} = − ∇̂p̂

k(α)
, (6.18)
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Figure 7. The measured fraction of the continuous fluid as a function of the actual fraction for
ρ̂ = 0.1, 0.8, 1.2, 10 when α is constant.

where

k(α) =
3− 2(1− ρ̂)α+ (1− ρ̂)2α2

3ρ̂+ (2− ρ̂)(1− ρ̂)α
. (6.19)

Equations (6.9) and (6.18) show that p̂ satisfies

∇̂ ·
{
∇̂p̂
k(α)

}
= 0. (6.20)

The boundary conditions on the normal component of the mixture velocity, αû1 +
(1− α) û2, at each of the solid surfaces gives

∂p̂

∂r̂
= 0 at r̂ = R̂C , (6.21)

∂p̂

∂r̂
= k(α)eit̂ cos θ at r̂ = 1. (6.22)

The remaining boundary conditions at the solid surfaces are satisfied across a bound-
ary layer.

If α is constant p̂ is harmonic, and the solution of (6.20) subject to boundary
conditions (6.21) and (6.22) is

p̂ =
k(α)eit̂

1− R̂2
C

(
r̂ +

R̂2
C

r̂

)
cos θ. (6.23)

Since the solution is simply a multiple of the single-phase solution (3.1), the effect of
the pipe wall on the measured density is the same. The measured liquid fraction is
independent of R̂C and given by

αmeas =
α {3− (1− ρ̂) α}

2ρ̂+ 1 + (1− ρ̂) α
. (6.24)

Figure 7 shows αmeas (α) for various values of the density ratio, ρ̂. As we have found
in the other idealized situations that we have studied, the error is much greater when
the density ratio is large or small, and αmeas/α→ 1 as ρ̂→ 1. When the density ratio
is large or small the inertial forces generated by the relative motion of the two phases
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Figure 8. The measured fraction of the continuous fluid as a function of the actual fraction for
ρ̂ = 0.1, 0.8, 1.2, 10 when α varies quadratically with r̂ and (a) R̂C = 2, (b) R̂C = 3, (c) R̂C = 5.

are sufficiently large to invalidate the simple interpretation. This is not simply due to
the interphase added mass force. Indeed the difference between αmeas and α is even
greater if the added mass force is neglected, since it acts to decrease the amplitude of
the relative motion between the two fluids.

As an example of a spatially non-uniform distribution of fluids we consider the
distribution

α(r̂) =
6ᾱ
(
R̂C − r̂

)
(r̂ − 1)(

R̂C − 1
)2

. (6.25)

The fraction of fluid 1 varies quadratically with r̂ and α = 0 at the rod and the
pipe wall. The mean value of α is ᾱ. Note that we must restrict our attention to
0 6 ᾱ 6 2/3 in order to ensure that α 6 1 everywhere. We seek a solution of the form

p̂ = eit̂ cos θf(r̂). (6.26)

On substituting this into equation (6.20) and boundary conditions (6.21) and (6.22)
we obtain

f′′ +

(
1

r̂
− 1

k(α)

dk

dα

dα

dr̂

)
f′ − 1

r̂2
f = 0, (6.27)
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subject to

f′ = 0 at r̂ = R̂C , (6.28)

f′ = 1/ρ̂ at r̂ = 1. (6.29)

We can easily solve this two-point boundary value problem using the NAG routine
D02GBF, and hence determine the fraction of liquid 1 measured by the device as

αmeas =

{
1 + ρ̂

(
R̂2
C − 1

R̂2
C + 1

)
f(1)

}
/(1− ρ̂). (6.30)

Figure 8 shows how the measured fraction of liquid 1 varies as a function of the
actual mean fraction, ᾱ, for various values of ρ̂ and R̂C . When R̂C = 2 (figure 8a) and
ρ̂ = 0.8 or 1.2 the measured fraction is close to the actual fraction, whilst for ρ̂ = 0.1
or 10 there is a significant error. When R̂C = 3 or 5 (figures 8b and 8c) the measured
value is significantly lower in each case than when R̂C = 2, since the device is most
sensitive to the fluid close to the surface of the rod, where the liquid fraction is lower
than the mean value.

7. Conclusion
In this paper we have studied the response of an idealized system that has many of

the features of a vibrating-element density meter operating in a two-phase flow. We
have interpreted the results by assuming that the meter is operating in a single-phase
fluid with density equal to that of the multiphase mixture. The main conclusion we
can reach is that, if there is a significant density difference between the two phases,
this interpretation produces unacceptably large errors. In practice, for particular cases
where the likely disposition of the two phases is known in advance, for example slug
flow or bubbly flow, a multiphase interpretation of such a meter may be possible, since
in realistic cases the amplitude of the force on the device is likely to vary monotonically
with mixture density. However, we have clearly shown that the resonance peak will
not lie at the same frequency as it would for a single fluid with the same mean density.
When the densities of the two fluids are comparable, for example in a flow of oil and
water, the single-phase interpretation gives good results. However, we must note that
this suffers from the same problem as any device that measures mixture density, for
example a simple gradio–manometer. The calculation of αmeas involves the ratio of
two small quantities and can easily be degraded by small measurement errors.

If the vibrating element has a typical lengthscale R, we have seen that it responds
mainly to the fluids within a few multiples of R away. In addition, the response is
spatially non-uniform with distance from the device, with the fluids at its surface
having the greatest effect on the response. The most extreme case is when a thin
layer of gas on the surface of the vibrating element masks the presence of any denser
fluid further away. This suggests that some sort of flow conditioning is probably
necessary in order to make the mixture as spatially homogeneous as possible if the
simple interpretation is to be used.

I would like to thank Professor J. R. A. Pearson for suggesting this problem to
me, and Professor A. C. King for his help in tidying up my finite Mellin transforms.
Most of this work was done whilst I was an employee of Schlumberger Cambridge
Research.
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